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B-2610 Wilrijk, Belgium 
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Abstract. A set of lower bounds is obtained for (e-*) from which a corresponding set of 
upper bounds is derived for the free energy. If the expectation values are expressed in 
the operator formalism the Bogolubov inequality (for Hermitian operators) is obtained as 
the first upper bound. When the expectation value is written as a path integral the Feynman 
inequality (for real actions) results as the first upper bound. It is shown that the second 
upper bound is identical to the one derived by Zeile for the path integral formalism while 
in the operator formalism this second upper bound is the one given by Dorre et al. 

1. Introduction 

Inequalities provide an important tool to obtain an approximation for some physical 
quantities; e.g. they allow us to find an upper bound for the free energy. Such 
inequalities permit us to approximate the real system (often too complicated to be 
solved exactly) by a model system which can be solved exactly. Using these inequalities 
one can choose the model system in such a way that the physical quantity under study 
is approximated as closely as possible. The advantage of considering problems via 
such inequalities is that it is often possible to handle problems beyond the scope of 
perturbation theory (treatment of systems for arbitrary coupling strength). 

The quantity of main interest in statistical mechanics is the free energy. The relation 
between the free energy F and the partition function 2 is 

2 = e-pF, (1) 
In the operator formalism the partition function is given by 

2 = Tr (e-@"). 

Suppose that the system with Hamiltonian H can be approximated by a model 
Hamiltonian Hoe When H and Ho are Hermitian Hamiltonians the Bogolubov 
inequality is valid (Bogolubov 1947) 

F Fo + (( H - Ho)) (3)  
with Fo the free energy corresponding with the Hamiltonian Ho. This Hamiltonian 
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defines an expectation value 

1 
Z” 

(A) = - Tr ( e-PHoA) (4) 

(5) 

In Feynman’s path integral formulation (Feynman and Hibbs 1965) of quantum 
mechanics the partition function is written as 

Z = dx Dx( t )  exp( S[ x( ?)])a( x(0) - x)6( x(p) - x) !, ! 
where the integration over x extends over the interval R (which may be the whole 
real space). For convenience a system with only one variable is considered in equation 
(6); the generalisation to an arbitrary number of variables is trivial. In the path integral 
formulation the system is described by the action functional S. In the path integral 
formalism one has the inequality (Feynman 1955, Feynman and Hibbs 1965) 

F G Fo - BPI(( s - So)) ( 7 )  

with the expectation value 

and the partition function 

Zo = dx Dx(t)  exp(So[x(t)])8(x(0) - x)S(x(p) - x).  (9) I, I 
Inequality (7) results immediately for real actions S and So if Jensen’s theorem for a 
convex function is applied. As far as we know this inequality has not been proved for 
complex actions. Such actions appear for systems described by a Lagrangian containing 
terms with an odd power of the velocity (e.g. if a magnetic field is present). In such 
a case one is no longer sure? about the validity of equation (7).  From this point of 
view Bogolubov’s inequality is more general than Feynman’s inequality. On the other 
hand in some sense the action is a more general concept than the Hamiltonian. For 
example it is possible that the action contains a memory effect (i.e. an interaction 
which is non-local in time). A well known example for a non-local interaction is the 
polaron problem (Feynman 1955). 

The structure of the paper is as follows: first an alternative derivation of the 
Bogolubov inequality and the Feynman inequality is presented in § 2. In § 3 a set 
of upper bounds to the free energy is constructed. Bogolubov’s and Feynman’s 
inequality result as the first upper bound in this set. In § 4 it is shown that the second 
upper bound is identical with the one derived by Zeile (1978) for the path-integral 
formalism and by Dorre et a1 (1979) for the operator formalism. In appendix 1 it is 
demonstrated that the inverse Laplace transform of a certain class of functions is 
positive. This result is of essential importance in the derivation of the different 
inequalities. The proof is based on Widder’s formula (Widder 1934). 

t There exist intuitive arguments (see e.g. Feynman and Hibbs 1965, Peeters and Devreese 1982) that the 
Feynman inequality is also valid for certain complex actions (i.e. when the actions can be derived from 
Hermitian Hamiltonians). 
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2. An alternative proof of the Bogolubov inequality and the Feynman inequality 

As an illustration of our method the well known inequalities of Bogolubov and of 
Feynman are derived in this section. Because an inequality between two expectation 
values will be proved it is not necessary to say in which representation one works. 

Consider the function 

~ ( t )  = (e-'A), t € R  (10) 

f ( s )  = YiF(t)) = ( l / ( s + A ) )  (1 1) 

and its Laplace transform 

with 9 the Laplace transform operator and s > min[A] which in the operator formalism 
is understood as min[A] = smallest eigenvalue of A. A and the expectation value ( .) 
are interpreted in the following way: (i) in the operator formalism, A is a Hermitian 
operator; the expectation value is defined by equation (4), (ii) in the path-integral 
formalism A is a real functional A[x], the expectation value is defined by equation (8). 

prove a corresponding inequality for the Laplace transform; i.e. (1/( s +A))  2 
l / ( s + ( A ) ) .  In the present paper the reverse way will be followed: starting from 
successive approximations for the Laplace transform a set of bounds will be obtained 
for the inverse Laplace transform (e-'"). 

Following Devreese (1978) (see also appendix B of Devreese et a1 1975) we 
introduce a parameter a ,  in the following way 

In earlier work by one of us (Devreese 1978), one started from (e-rA)2e-1(A) to 

f ( s )  = l / ( s +  ai)-((A-ai)) / [ (s+ ai) ' I+R,(s;  ai) 

Ri(s;  ai) = [ l / ( s  + ai)21((A-ai)2/(s+A)) .  

(12) 

(13) 

with 

Equation (12) is derived by using twice the identity 

l / ( a  + x )  = l / x  - a / x ( a  + x) i 14) 

with x = s + a ,  and a = A - a , .  In appendix 1 it is shown that the inverse Laplace 
transform of Rl (s ;  a , )  is positive. The approximation in this section consists of 
neglecting this positive term. Consequently the closest approximation is obtained when 
R I  is a minimum; this means 

dR,/aa, = 0 (15) 

a l = ( A ) .  (16) 

or 

This extremum is indeed a minimum because (see appendix 1) 

9 - l  a2R,/aa:(.,=(,,> 0. (17) 

F ( t )  = 9 - ' f ( s ) ,  (18) 

(e-") 3 e-(A). (19) 

Combining equations (1 l) ,  (12) and (16) one finds for the inverse Laplace transform 

in the case that t = 1, the inequality 
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The Bogolubov inequality results by taking A equal to the Hermitian operator 

A = @ ( H - H , )  (20) 

which means that equation (19) becomes 

Z 2 Z, exp[ - p  ( H  - HO)] .  

Taking the logarithm of this inequality results in the upper bound (3) for the free energy. 
To obtain the Feynman inequality one takes A equal to the real functional 

A=-S[x]+SO[x].  (22) 

With (22) in the inequality (19) and taking the logarithm one gets the Feynman 
inequality (7). 

3. Generalisation of the inequality of Bogolubov and the inequality of Feynman 

Introducing more parameters into the theory and applying equation (14) successively 
one will find a better approximation, i.e. a lower upper bound to the free energy. The 
aim of this chapter is to derive a set of lower bounds to the expectation value (e-A). 

In the same way as in 0 2 (see also Devreese et a1 1975) we introduce a new 
parameter a, in the term (13) 

with 

( A - a 1 ) ' ( A - a 2 ) ,  1 
s+a,)*  ( s + a 2 ) *  ( s + A )  RAs;  a , ,  4 = ( ( (24) 

Proceeding in the same way one can introduce n parameters ( a l , .  . . , a n ) .  Finally one 
finds for the Laplace transform (1 1) the expression 

and 

The product HE;' in equation (26) should be interpreted as equal to 1 for m = 1. 
With the techniques given in appendix 1 one can prove that 

Y I R n ( s ;  a , ,  . . . , a,,)aO. (28) 

The present approximation consists in neglecting this term. The best approximation 
is obtained if the parameters a, are determined by 

i =  1 , .  . , , n (29) aR,laa, = 0 ,  
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which results in 

Again the definition that g, = 1 for m = 1 and n:=,,, g, = 1 for m = n has been 
adopted. The solution of this set of equations will be denoted by a:" ' ,  i = 1, .  . . , n. 
From equation (30) it is clear that for the nth bound one needs to calculate moments 
up to M2,-,. These moments are defined by 

M,, =(A") .  (31) 

In what follows several properties of the solutions of (30) are proved. 
(1) The solutions a:"' of the n-nonlinear algebraic equations (30) are given by 

the roots of a polynomial of degree n. To see this rewrite (30) in the following way 
(see appendix 2) 

AX+Y=O (32) 

with A an (n  x n )  matrix with elements 

AI] = M2n-(r+]), (33) 

Yt = M2n-1, i =  1 , .  . . , n (34) 

i, j = 1, . . . , n 

and the vectors 

x,=(-)" 2 a t '  i a:' . . .  a:), m =  1, .  . . , n (35) 
n l = l  n 2 = n , + l  n, = ",_, + 1 

with the definition Z:l = p  = 0 if p > n. 
Inverting (32) results in a solution for XI from which one can obtain a:"'. From 

equation (35) it is clear that the XI can be considered as the coefficients of the 
polynomial (define Xo = 1) 

n 

P , ( x ) =  c x$-' 
I =o 

= r-j ( x - a ! " ' ) .  
z = 1  

(2) All the roots a:"' of equation (36) are real. From (32) (see also equation 
(30)) we know that all XI are real because Az1 and Y, are real. Suppose that U:' is 
a complex root; then also its complex conjugate must be a root of (36). Consider 
equation (30) for m = no 

The expectation values on the left and the right-hand side of the above equation are 
real because (1) A is either a real functional or a Hermitian operator (which has real 
eigenvalues) and (2) a:"' is real or if a:"' is complex also its complex conjugate a!"' 
is present which makes (A - ai"')(A - 6:"') real. This forces us to conclude that u k '  
has to be real and thus that all a!"' must be real. 
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(3) Now it is proved that the extremal points a:" '  provide indeed a minimum for 
Y ' R , , ( s ;  a, ,  . . . , a,). To show this one calculates the second derivative 

m = 1 , .  . . , n. 
i t m  

With the same methods as in the appendix (using Widder's inversion formula) one 
proves that 

d2R,/aai aa, =- i, j = 1, . . . , n 

for i # j .  If the parameters a, are taken at the extremal point a:' one has 

d2R,laa1 aa, l {am=a;n~}  = 0, i # j , i ;  j = 1 ,  . . . ,  n. (41) 

Intuitively one expects that with increasing n the rest term Z' R, decreases. This 
can be proved. Consider 

Rn-l(s; a,, . . * 9 a n - 1 )  

this equality is valid for arbitrary parameters ai. Because of equation (30) the second 
term on the RHS of (42) is zero when we take a, = a?'. In the same way as before 
one proves that 

Combining this inequality with equation (42) leads to the inequality 

LFIRfl- , (s;  a,, . . . , a f l - , ) 2 2 - ' R , , ( s ;  a, ,  . . . ,a,-,, a : ) ) .  (44) 

For the (n  - 1)th bound the parameters are determined by 

aR,-,/aa, = 0, i = l , .  . . , n - 1  (45) 
which gives the values a, = a!"-", while for the nth bound the condition 

aR,/aa, = 0, i = l , .  . . , n (46) 
determines the parameters a, = a:" ' .  This means that 

Y I R n ( s ;  a!"-", . . . , a!,'-;'), a!,'") 2 P-'R,(s; a i" ) ,  . . . , a:!,, a y ) )  (47) 

and combining this inequality with inequality (44) leads to 

Y ' R n - , ( s ;  a',"-", . . . , U ~ - ; ~ ) ) Z ~ ? - ' R , , ( S ;  a:"', . . . ,a : ' ) .  (48) 

t > 0 in the foregoing calculations ( t  is the variable in the inverse Laplace transforms). 
From the equations ( 2 5 ) ,  (28) and (48) the final result can be formulated as 

(e-")2 ~ - ' I , ( S ;  a',"', . . . , a p ) ) l r = ,  (49) 
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and 

(50) a ' n - l '  Y I I n ( s ;  a:"', . . . , 2 =Y-lIn-l(s; a'""' 1 , . a *  > n-1 ) I t 4  

where I,, is given by equation (26) .  

4. Discussion 

Zeile (1978) has given a similar set-up of upper bounds to the free energy within 
Feynman's path integral formulation. If A is a real functional he finds the inequality 

which is analogous to equation (49); b!"' and x:") in (51) are determined by a set of 
2n nonlinear algebraic equations. Dorre er al (1979) have derived a similar inequality 
for n = 1 , 2  in the operator formalism. Taking the inverse Laplace transform of equation 
( 2 6 )  we find the same form as equation (51). But in our case one only has to determine 
n-parameters a:"' ( = x ln ' )  which are the roots of a polynomial equation of degree n 
(given by equation ( 3 6 ) ) .  The b!"' are immediately expressed in terms of the xj") 
when one performs the inverse Laplace transform of (26) .  In the work of Zeile and 
Dorre eta! and in our approach the parameters bj"', x!"' are a function of the moments 
MI up to M2,- , .  This suggests that both approaches are equivalent. 

For n = 1 and n = 2 we have proved that one gets the same upper bound to the 
free energy. The case n = 1 was considered in 0 2. For n = 2 in which then the 
parameters x!" are determined by the polynomial (see ( 3 6 ) )  

x2  + BX - C = 0 ( 5 2 )  

The solutions are 

with the cumulants K ,  = MI, K 2  = M 2 -  M:, K 3  = M 3 -  3M&f1+ 2 M :  and the para- 
meters K = K 3 / 2 K 1 ,  A = ( K 2 +  K2)1'2.  Finally in the path integral formalism we found 
the same upper bound as Zeile 

(57) 

with the moments given by M, = ((So - S ) " ) .  
The advantage of our method to the one of Zeile (1978) is that without additional 

effort we find at the same time upper bounds in the operator formalism and in the 
path integral formalism. In the operator formalism the moments are defined bv 

l=s Fo-P-'(K, + K )  - P - '  ln(cosh A - KP-' sinh A )  

M, = P " ( ( H - H o ) " )  while in the path integral formalism they are given by Mn 
((So- S ) " ) .  
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Appendix 1. 

In this appendix it is shown that several functions needed in § §  2 and 3 are positive. 
In 9 0  2 and 3 these functions were written as the inverse Laplace transform of another 
function. Therefore it is natural to look for an inversion formula (inverse Laplace 
transform) which relies on real variables only (avoiding the Bromwhich contour 
integration in the complex s-space). 

Such a real inversion technique is realised by Widder's inversion formula (Widder 
(1934); for a nice application of this formula to the problem of Landau damping in 
plasma physics see Bohn and Flynn (1978)) 

( A l . l )  

with f'"'( s) the nth derivative of the Laplace transform f (  s) = 2F( t). 
This formula will be used to prove that S-'R, 2 0  and 2-' a2R,/aaT 2 0  (see 

equations (27) and (38)). First a few formulae which are needed in the proof are given. 
Consider the function 

F ( s ) = l / ( s + a ) ;  (A1.2) 

after differentiating n times one has 

(-)"n! 
( s +  a)""' 

F'"'( s) = 

The nth derivation of a product of functions is given by 

with the binomial coefficient 

Applying this formula to the function 

G , ( s )= l / ( s+a )"  

gives for the nth derivative 

( - ) " ( n + m - l ) !  
GE'(s) = 

( s  + a 

With these formulae it becomes easy to prove the following theorem. 

Theorem. Given the function 

(A1.3) 

(A1.4) 

(A1.5) 

(A1.6) 

(A1.7) 

(A1.8) 
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the sign of the inverse Laplace transform G ( t )  = Y - ' g ( s )  is given by 

with 
sgn G( t )  = sgn r', t € R  

m 

M =  k i - 1 .  
r = l  

(A1.9) 

( A l .  10) 

Proof. Using equations (A1.4) and (A1.7) one  finds for the nth derivative of g(s) 
n "1 

" 2 2  fi (n;,) (nr - , -nr+ki -1) !  
g ' " ' ( s ) = ( - ) "  n l = O  1 n 2 = 0  1 . . . n,_,=O r = l  ( S + X , ) " , - l - " , + k ,  

( A l . l l )  

with the definition n,, 5 n and n,, 
( A l . l )  one has for the inverse Laplace transform 

0. Putting this expression in Widder's formula 

G ( t )  = t Z M H ( t ) ,  
with 

t € R  ( A l .  12) 

(A1.13) 

In the  limit n + cc each term in the sum of equation (A1.13) becomes positive. Thus 
H ( t )  is positive because it is a sum of positive terms. This proves the theorem. 

As an application of this theorem one can prove that the inverse Laplace transform 

R i ( s ;  ai) =[l / (s+ai)21((A-a1)2/(s i .A))  ( A l .  14) 

of (see equation ( 13)) 

is positive for positive t. The proof is as follows. 

In the path integral formulation A becomes a real quantity, thus a ,  = ( A )  is also real. 
So we can apply the foregoing theorem. In the operator formalism the expectation 
value in equation (A1.14) can be expressed in a basis of eigenvectors of A. The 
eigenvalues of A are real because A is a Hermitian operator. And thus one can apply 
the theorem again. This proves that 

= Y ' R  I ( s ;  a > 0, t E R'. (A1.15) 

As a second example consider the second derivative of R , ( s ;  a , )  with respect t o  

( A l .  16) 

From the theorem (equation (A1.9)) it is clear that the inverse Laplace transform of 
( A l .  16) is indeed positive for t E R'. In the same way one can prove similar properties 
for  R,,(s; a l , .  . . ,a, ,) .  

a ,  for a ,  = ( A )  

d'R, / da: l a )  =(  .\, = 2 /  (s + ( A))3. 

Appendix 2. 

In this appendix equation (30) of B 3 
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will be simplified considerably. To do so write equation (A2.1) as 
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(fi ( A - a j )  m = l  fi (A -a , ) ’ )=O.  i = l , .  . . , n 
j =  1 

m # i  

and after introducing the matrix 

SL,=X1-ila,=m i, j = 1,  . . . , n 

with the definitions 

x,= 1 

if p > n, 
11, = p  

one can write equation (A2.2) as 

Writing out the product in equation (A2.5) leads to 

and remembering that Mm = (A”‘) gives 

which becomes 

(A2.2) 

(A2.3) 

. .  

i = 1 , .  . . , n. 

i =  1,. . . , n 

. , a  

m = l , .  . . , n 

(A2.4) 

S(&X+ U) = o  
if we introduce the n X n matrix 

Ai, = Mln-i,+,,, i =  1,. . . , n 

and the vector 

y, = M Z n - i ,  i = 1,  . . . , n, 
Multiplying equation (A2.8) with the inverse of the matrix S leads to 

& X + Y = O  

the result of this appendix. S - ’  exists indeed because 

n 

d e t S = ( - ) “  n ( a , - a j )  
i c j = l  

(A2.5) 

(A2.6) 

(A2.7) 

(A2.8) 

(A2.9) 

(A2.10) 

(A2.11) 

(A2.12) 

is non-zero due to the fact that all a, are different from each other. 
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To get a clearer idea what equation (A2.11) looks like, we will write it down 
explicitly for the particular case of n = 3 

(A2.13) 

where 
X1 = -(ai + a, + a3),  X,=ala2+ola3+a2a3,  X 3  = a1a2a3.  (A2.14) 
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